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Abstract The substantial loss in the stratospheric ozone

layer and consequent increase in solar ultraviolet radiation

on the earth’s surface have augmented the interest in

searching for natural photoprotective compounds in

organisms of marine as well as freshwater ecosystems. A

number of photoprotective compounds such as mycospo-

rine-like amino acids (MAAs), scytonemin, carotenoids

and several other UV-absorbing substances of unknown

chemical structure have been identified from different

organisms. MAAs form the most common class of UV-

absorbing compounds known to occur widely in various

marine organisms; however, several compounds having

UV-screening properties still need to be identified. The

synthesis of scytonemin, a predominant UV-A-photopro-

tective pigment, is exclusively reported in cyanobacteria.

Carotenoids are important components of the photosyn-

thetic apparatus that serve both light-harvesting and

photoprotective functions, either by direct quenching of the

singlet oxygen or other toxic reactive oxygen species or by

dissipating the excess energy in the photosynthetic appa-

ratus. The production of photoprotective compounds is

affected by several environmental factors such as different

wavelengths of UVR, desiccation, nutrients, salt concen-

tration, light as well as dark period, and still there is con-

troversy about the biosynthesis of various photoprotective

compounds. Recent studies have focused on marine

organisms as a source of natural bioactive molecules hav-

ing a photoprotective role, their biosynthesis and com-

mercial application. However, there is a need for extensive

work to explore the photoprotective role of various UV-

absorbing compounds from marine habitats so that a range

of biotechnological and pharmaceutical applications can be

found.

Keywords Cyanobacteria �Macroalgae � Phytoplankton �
Mycosporine-like amino acids � Scytonemin

Introduction

There is growing interest in marine organisms to explore

the bioactivity of various marine compounds associated

with human life. A variety of marine natural products with

their specific activities, such as antimalarial, antitubercu-

losis, anticancer, antifoulants, anti-inflammatory, anti-HIV,

etc., have been reported from diverse marine organisms

such as cyanobacteria, macroalgae, phytoplankton and

animals [22, 28]. In recent years, natural products from

marine organisms have gained increasing research aware-

ness, and a number of novel marine compounds of potential

economic importance have been reported from different

marine organisms [22, 60, 61, 111, 123, 216, 230, 231].

During the past 2 decades, a substantial loss in the

stratospheric ozone layer has been noticed that has aroused

concern about the effects of increased solar ultraviolet

radiation (UVR), particularly UV-B radiation (280–

315 nm), on the earth’s surface. Solar UV-B radiation is

detrimental for most sun-exposed organisms, including

humans [84, 88, 187, 192, 193]. An increase in UV-B

radiation has aroused interest in searching for the natural

photoprotective compounds from various organisms such
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as microorganisms, plants and animals of marine as well as

freshwater ecosystems.

A number of photoprotective compounds, such as mel-

anins, mycosporines, mycosporine-like amino acids

(MAAs), scytonemin, parietin, usnic acid, carotenoids,

phycobiliproteins, phenylpropanoids and flavonoids and

several other UV-absorbing substances of unknown

chemical structure, have been identified from different

organisms (Fig. 1) [21, 42, 75, 93, 94, 97, 102, 110–112,

124, 194]. There have been a number of reviews about

diverse classes of compounds from natural sources

including marine habitats, but the occurrence of photo-

protectants from marine sources has only partially been

elucidated. This review summarizes the occurrence and

biosynthesis of important UV-absorbing/screening com-

pounds from various marine sources and their extensive

commercial application.

Marine photoprotective compounds

UVR is one of the most harmful exogenous agents and

may affect a number of biological functions in all sun-

exposed living organisms. Solar radiation exposes the

organisms to harmful doses of UV-B and UV-A (315–

400 nm) radiation in their natural habitats. In response to

intense solar radiation, organisms have evolved certain

mechanisms such as avoidance, repair and protection by

synthesizing or accumulating a series of photoprotective

compounds, such as MAAs, scytonemin, carotenoids and

certain other compounds to counteract the toxicity of UV

(particularly UV-B) radiation [64, 111, 184, 188, 194,

198]. Furthermore, MAAs are the most common com-

pounds with a potential role as UV sunscreens in marine

organisms.

Mycosporine-like amino acids

Mycosporine-like amino acids have been reported in

diverse organisms; they are a family of secondary meta-

bolites that directly or indirectly absorb the energy of solar

radiation and protect organisms exposed to enhanced solar

UVR [84]. MAAs are intracellular, small (\400 Da), col-

orless and water-soluble compounds that consist of cyclo-

hexenone or cyclohexenimine chromophores conjugated

with the nitrogen substituent of amino acids or its imino

alcohol [184]. In general, MAAs have a glycine subunit at

the third carbon atom, although some MAAs contain sulfate

esters or glycosidic linkages through the imine substituents

[225]. MAAs are favored as photoprotective compounds

because they have maximum UV absorption between 310

and 362 nm, high molar extinction coefficients

(e = 28,100–50,000 M-1 cm-1), the capability to dissipate

absorbed radiation efficiently as heat without producing

reactive oxygen species (ROS), and photostability and

resistance to several abiotic stressors [44, 81, 223].

It has been found that MAAs provide protection from

UVR not only for their producers, but also to primary and

secondary consumers through the food chain [90]. MAAs

have been reported extensively from taxonomically diverse

organisms, including many marine groups such as hetero-

trophic bacteria [4], cyanobacteria and micro/macroalgae.

Many animals such as arthropods, rotifers, molluscs, fish,

cnidarians, tunicates, eubacteriobionts, poriferans, nemer-

tineans, echinodermates, platyhelminthes, polychaetes,

bryozoans and protozoans have also been reported to pro-

tect themselves from UVR by MAAs [194]. Recently, an

MAA, mycosporine-glycine (MG), has been isolated from

the marine lichen Lichina pygmaea [41]. Presently, about

21 MAAs have been reported from terrestrial, freshwater

and marine organisms.
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High performance liquid chromatography (HPLC) is the

common method to detect the particular MAA using the

distinctive nature of their retention times and absorption

spectra (Fig. 2). However, certain closely related unknown

compounds have similar absorption maxima and retention

times, which still cause difficulties in the identification

process. Liquid chromatography coupled with electrospray

ionization mass spectrometry (LC-ESI-MS) can be utilized

to examine MAAs’ structural diversity [222].

MAAs in marine cyanobacteria

Cyanobacteria are prominent in many superficial habitats

exposed to high solar irradiance, including intertidal mar-

ine flats swamped so infrequently that most eukaryotic

competitors and herbivores are absent. On rocky marine

substrates, many cyanobacteria form crusts or small cush-

ions in the high intertidal or supratidal zone. They are

significant constituents of marine ecosystems and account

for a high percentage of oceanic primary productivity. The

presence of UV-absorbing compounds like MAAs pre-

sumably may have supported the existence of cyanobac-

teria in the Precambrian era when there was no

stratospheric ozone layer. The accumulation of large

amounts of MAAs in cyanobacteria was first reported by

Shibata [174] from the Great Barrier Reef. Accumulation

of MAAs in cells are regulated by an osmotic mechanism

that may be evident by the accumulation of high concen-

trations of MAAs in the field populations of halotolerant

cyanobacteria [151]. The probability that MAAs act as

UV-B-absorbing compounds has been derived from the fact

that the distribution of MAAs in marine organisms shows a

significant correlation with depth, which in turn controls

the exposure of UV or PAR (photosynthetically active

radiation) [57]. Shinorine and porphyra-334 have been

found to be the most dominant MAAs in several species of

marine cyanobacteria [105, 186, 190] (Table 1). The cya-

nobacterium Nodularia spumigena is known worldwide for

developing toxic blooms, e.g., in the Baltic Sea [116].

Sinha et al. [186] reported three species of this cyanobac-

terium, Nodularia spumigena, Nodularia baltica and

Nodularia harveyana, from the Baltic Sea that produce the

MAAs porphyra-334 and shinorine upon UV-B irradiation.

MAA-producing cyanobacteria are abundant in hypersaline

environments. On the basis of the 16s rRNA gene sequence

of 13 MAAs-containing strains of unicellular halophilic

cyanobacteria, Garcia-Pichel et al. [73] found a common

complement of MAAs in all of them. The majority of

halotolerant cyanobacterial populations accumulate high

concentrations of MAAs as photoprotective compounds

[151].

MAAs in marine macroalgae

Several species of macroalgae, belonging to Rhodophyceae

(red), Phaeophyceae (brown) and Chlorophyceae (green

algae), are used as foodstuffs in the diets of people from

Pacific, Asian, Canadian and Icelandic cultures [229].

Besides their food value, many macroalgal species that are

commonly exposed to elevated solar radiation synthesize

and accumulate high concentrations of MAAs as UV-

sunscreen compounds. The presence of UV-absorbing

substances in a macroalgal species was first reported by

Tsujino and Saito [215]. Later several scientists reported

these compounds in all major taxonomic groups [194].

Several species of red algae, such as Acanthophora,

Bangia, Bostrychia, Caloglossa, Catenella, Devaleraea,

Ceramium, Chondrus, Corallina, Devaleraea, Gelidiella,

Gelidium, Gracilaria, Iridea, Palmaria, Phyllophora,

Polysiphonia, Porphyra, Stictosiphonia, etc., have been

reported to produce high concentrations of different MAAs

[194]. Recently, Karsten et al. [103] reported three main

MAAs, palythine, shinorine and porphyra-334, from

Porphyra umbilicalis isolated from the rocky upper littoral

zone of the island Helgoland, Germany, in the North Sea.

Six different MAAs, palythine, shinorine, asterina-330,

porphyra-334, the medium polarity palythinol, and the low
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polarity usujirene, have been reported for the first time

from the edible red alga, Palmaria palmata (dulse) har-

vested from the west and east coasts of Grand Manan

Island, New Brunswick [230]. Coba et al. [41] recently

reported the presence of the MAAs porphyra-334 and

shinorine from the red alga Porphyra rosengurttii, asterina-

330 and palythine from Gelidium corneum, as well as

shinorine from Ahnfeltiopsis devoniensis. Prophyra-334 is

an MAA widely distributed among marine algae. The

imino-MAAs porphyra-334 and shinorine, isolated from

the red alga Gracilaria cornea, have been found to be

highly stable against UV and heat stress [189]. Zhaohui

et al. [232] reported prophyra-334 from a marine alga that

was quite stable in water at a temperature of 60�C. A high

degree of MAA diversity has been found in the majority of

Rhodophyceae; for instance, Gracilaria changii contains

up to seven different UV-absorbing compounds [108].

In contrast to Rhodophyceae the occurrence of MAAs in

Chlorophyceae and Phaeophyceae is limited. Within the

Chlorophyceae, most species do not contain MAAs or only

trace concentrations of these compounds [108]. In an

investigation of the occurrence of MAAs in 13 macroalgal

Chlorophyceae collected from the intertidal zone of the

tropical island Hainan, Karsten et al. [108] found a sig-

nificant concentration of photoprotective compounds, such

as mycosporine-glycine and porphyra-334, only in two

green algae, Boodlea composita and Caulerpa racemosa,

respectively. Post and Larkum [161] reported certain UV-

absorbing compounds of unknown chemical nature from

green algae. Han and Han [86] reported the induction of

UV-B-absorbing compounds with a prominent absorption

maximum at 294 nm in the green alga Ulva pertusa by

using different cutoff filters.

Since the occurrence of MAAs is restricted in Chloro-

phyceae as well as in Phaeophyceae, certain other UV-

absorbing compounds might be present in them to protect

against UV radiation damage. Pavia et al. [154] reported

the occurrence of a polyphenolic compound, phlorotannin,

as an UV-absorbing compound (absorbing between 280

and 320 nm) from the brown alga Ascophyllum nodosum.

A number of Phaeophyceae produce and accumulate

phlorotannins in high concentrations (up to 20% of their

dry weight); however, the potential sunscreen functions of

phlorotannins need further comprehensive study. Some

common macroalgae and their photoprotective products

from marine or hypersaline habitats are listed in Table 1.

MAAs in marine phytoplankton/microalgae

Phytoplankton are undoubtedly the major biomass pro-

ducers in marine ecosystems. In addition to playing a major

role in the food web, many genera of phytoplankton pro-

duce certain volatile substances such as dimethyl-sulfide

(DMS) that serve as an antecedent of cloud condensation

nuclei (CCN) and neutralize the greenhouse effect [39].

The cumulative effect of marine biota in the reduction of

CO2 concentration and emission of DMS has been esti-

mated to cool the atmosphere by up to 6�C [220]. Like in

cyanobacteria and macroalgae, several MAAs (Table 1)

have also been isolated and identified from a number of

marine phytoplankton species [34, 87, 110, 120, 125, 226].

MAAs have been reported to occur predominantly in

members of the Dinophyceae, Bacillariophyceae and

Haptophyceae (or Prymnesiophyceae). Some species of

dinoflagellates such as Alexandrium excavatum [34] and

Table 1 Occurrence of MAAs in some marine cyanobacteria, macroalgae and phytoplankton

Organisms MG PT AS PL PR SH PE MGV PNA MMS M328/

360

SME MT PS M2G M333 M320 US M335/

360

References

Lichen ? [41]

Cyanobacteria ? ? [105, 186]

Macroalgae

Red algae ? ? ? ? ? ? ? ? ? ? ? [20, 23, 36,

41, 107,

149]

Brown algae ? ? ? ? ? ? [102, 106,

146]

Green algae ? ? ? ? ? ? [102, 108,

146]

Microalgae/
phytoplankton

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? [35, 36, 89,

119, 141,

168]

MG mycosporine-glycine, PT palythine, AS asterina-330, PL palythinol, PR porphyra-334, SH shinorine, PE palythene, MGV mycosporine-

glycine-valine, PNA palythenic acid, MMS mycosporine-methylamine-serine, M mycosporine-like amino acids, SME shinorine methyl ester,

MT mycosporine-taurine, PS palythine-serine, M2G mycosporine-2-glycine, US usurijene
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the prymnesiophyte Phaeocystis pouchetii [133] are known

to produce MAAs in high concentrations. It has been found

that accumulation of MAAs may occur as a result of UV-

induced alterations in the synthesis of amino acids [77].

Elevated levels of PAR (400–700 nm) [34], blue light

(400–500 nm) [37], UV-A [37, 63] and UV-B wavelengths

[125] have been implicated in the MAA induction

response. However, Davidson et al. [49] reported the syn-

thesis of MAAs insensitive to UV-B radiation in five

common antarctic diatoms. The dinoflagellate Alexandrium

excavatum, isolated from the continental shelf near Buenos

Aires shows changes in the MAA composition and an

overall increase in UV absorption under low to high PAR

[37]. An increase in MAA concentration was shown in the

dinoflagellate Prorocentrum micans in the presence of only

UV radiation [125]. Photoinduction of MAA synthesis was

also found in the dinoflagellate Gyrodinium dorsum in the

presence of PAR [110] and only UV-A and UV-B radiation

[168]. Time-series data collected at the Bermuda Atlantic

time-series study (BATS) site represents the seasonal

induction of enhanced UV absorption by MAAs in phyto-

plankton in the summer-stratified surface water of the

Sargasso Sea [142]. In Antarctica, high in vivo absorption

at wavelengths indicative of MAAs was characteristic of

assemblages dominated by prymnesiophytes [218] and by

the chain-forming diatom Thalassiosira gravida [63].

Seasonal variations also affect the MAA concentrations in

phytoplankton. Recently, Riemer et al. [169] reported the

variation in the concentration of the MAA, mycosporine-

glycine and two other UVR-absorbing substances in phy-

toplankton during different months. UVR-mediated

induction of UV-absorbing compounds, with maximal

absorption at 334 nm, has recently been observed in

Skeletonema costatum, which is a cosmopolitan marine

diatom and known as a major component of most red tides

in eutrophic regions [224]. It has been suggested that a

significant fraction of the UVR reaching the marine dia-

toms could be absorbed by frustule-bound MAAs. Ingalls

et al. [94] for the first time analyzed the diatom frustule-

bound organic matter in opal-rich Southern Ocean plankton

and sediments and revealed the presence of several MAAs

such as palythine, porphyra-334, shinorine as well as traces

of asterina-330, palythinol and palythinic acid. The

occurrence of MAAs in close association with a mineral

phase shows that the mineral matrix can stabilize these

compounds and may increase photoprotection against the

harmful effects of UVR [94].

MAAs in marine animals

Identification and characterization of different MAAs from

various animals such as arthropods, rotifers, molluscs,

fishes, cnidarians, tunicates, eubacteriobionts, poriferans,

nemertineans, echinodermates, platythelminthes, poly-

chaetes, bryozoans and protozoans has been reported [194].

In nonsymbiotic marine invertebrates, MAAs have been

identified in echinoderms, a mussel, a sea hare, brine

shrimp and an ascidian [57]. MAAs are common in micro-

algal-invertebrate symbioses on coral reefs and other

habitats [176]. Other than the algal-invertebrate symbioses,

there is not much information regarding the occurrence of

MAAs in marine alga-bearing protists [57, 176]. However,

Sommaruga et al. [198] reported for the first time some

photoprotective compounds (shinorine, palythenic acid,

palythine, mycosporine-2-glycine and porphyra-334) in a

marine algal-bearing ciliate Maristentor dinoferus isolated

from coral reefs in Guam, Mariana Islands [130]. A num-

ber of MAAs were identified by McClintock and Karentz

[136] in 34 species of benthic marine invertebrates. Like-

wise, in a survey of occurrence of MAAs in marine

organisms (48 invertebrates and 1 fish), Karentz et al. [102]

accounted for different types of MAAs as photoprotective

compounds. The presence of four MAAs, palythine, por-

phyra-334, asterina-330 and shinorine, and their seasonal

variations (summer vs. winter) was investigated in various

species of soft corals isolated from the Eastern Red Sea

Coast, and palythine was found as the dominant photo-

protective compound in Sinularia polydactyla and

Sarcophyton trocheliophorum [2]. Concentrations of MAAs

vary seasonally and decrease with increasing depth. In

most corals there is a positive correlation between MAA

concentration and solar UVR [18, 213]. A change in the

PAR and UVR components of the solar spectrum with

increasing depth significantly affects the primary produc-

tivity and the biosynthesis of MAAs in the reef-building

coral Montastraea faveolata [126]. Interestingly, MAA

concentrations in corals decrease with low water flow and

are directly related to rates of photosynthesis [100]. A

considerable increase in MAA concentration (up to 67 and

56% for Lobophytum compactum and Sinularia flexibilis,

respectively) was shown in female soft corals prior to

spawning in comparison to male colonies, which indicates

that the parent is providing photoprotectants to its offspring

for better survival and furthermore supports the sex-spe-

cific variations in levels of photo-protecting mycosporine-

like amino acids (MAAs) [137]. At least 14 different

MAAs have been characterized in many coral species.

Recently, a major novel MAA, palythine-threonine

(C12H21N2O6
?) (Fig. 3), has been reported from the

hermatypic coral Pocillopora capitata and also from

P. eydouxi and Stylophora pistillata [33]. Occurrence of

four major MAAs such as mycosporine-taurine, shinorine,

porphyra-334, and mycosporine-2 glycine was found in the

four sympatric species of sea anemones in the genus

Anthopleura collected from intertidal habitats on the
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Pacific Coast of temperate North America [177]. Moreover,

diverse groups of marine animals have been reported to

synthesize MAAs (Table 2), which may render organisms

more tolerant to oxidative toxicity and increase their sur-

vival under the force of stresses such as UVR that mediate

production of ROS. It seems that photoprotective com-

pounds are generally produced by the lower photosynthetic

organisms including microbes, and marine animals indi-

rectly benefit from the accumulation of MAAs.

Biosynthesis of MAAs

There is still a great deal of controversy concerning the

precise mechanisms of MAA biosynthesis. However, it is

evident that 3-dehydroquinate formed during the early

stages of the shikimate pathway (Fig. 4) serves as a pre-

cursor for the synthesis of fungal mycosporines and MAAs

via gadusols [176, 184]. The inhibition of MAA synthesis

in a hermatypic coral, Stylophora pistillata, by the addition

of N-phosphonomethlyglycine (= glyphosate; a specific

shikimate pathway inhibitor) has provided the first direct

evidence for MAA synthesis through the shikimate path-

way in marine organisms [179]. Gadusol (3,5,6-trihydroxy-

5-hydroxymethyl-2-methoxycyclohex-2-en-1-one) and

deoxygadusol (3,5-dihydroxy-5-hydroxymethyl-2-methox-

ycyclohex-2-en-1-one) are structurally and biosynthetically

related to the MAAs that have been found in roes of cod

and other marine fish [40, 156] as well as in eggs, ovaries

and larvae of various marine invertebrates [13, 80].

Recently, Singh et al. [183] revealed the probable role of

certain genes involved in MAA biosynthesis in cyanobac-

teria and proposed that the YP_324358 and YP_324357

gene products are involved in the biosynthesis of the

common core (deoxygadusol) of all MAAs. The

YP_324879 gene product is exclusively involved in the

shikimate pathway catalyzing the formation of dehy-

droquinate, while the YP_324358 gene product in

conjunction with the YP_324357 gene product

(O-methyltransferase) catalyzes the formation of deoxyg-

adusol, which is the core of all MAAs (Fig. 5).

The synthesis of MAAs is restricted to bacteria, cya-

nobacteria, phytoplankton and macroalgae and does not

occur in animals (metazoa), as they lack the shikimate

pathway and take up MAAs via their food. However,

recently Starcevic et al. [204] reported the genes encoding

enzymes for the shikimate pathway in an animal, the starlet

sea anemone Nematostella vectensis, and challenged the

universality of this traditional view. Even so, certain

H
N

O

HN

OH

OH

OH

OH

O

H+

Fig. 3 Proposed structure of palythine-threonine isolated from the

hermatypic coral Pocillopora capitata

Table 2 Occurrence of MAAs in some marine animals

Organism MG PT AS PL PR SH PE MGV PNA MMS MT PSS MMT PS M2G MSE PTT References

Copepods ? ? ? ? ? [102]

Krill ? ? ? ? ? ? ? ? ? [102, 146]

Sea spiders ? ? ? ? ? ? [102]

Isopods ? ? ? ? ? ? [90, 102, 136]

Amphipods ? ? ? ? ? ? ? ? [90, 102, 149]

Molluscs ? ? ? ? ? ? ? ? ? ? [95, 102, 136, 163, 222]

Fish ? ? ? ? ? ? ? ? [58, 102, 163]

Sea anemones ? ? ? ? ? ? ? ? ? [10, 36, 96, 136, 177, 207]

Jelly fish ? ? ? [207]

Corals ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? [33, 36, 178, 179, 212, 213]

Ascdians ? ? ? ? ? ? ? [102, 136]

Sponge ? ? ? ? ? ? [136]

Sea urchins ? ? ? ? ? ? [1, 136]

Sea stars ? ? ? ? ? ? [102, 136]

Sea cucumbers ? ? ? ? ? ? ? [13, 136]

Sea hares ? ? ? ? ? ? [32]

PSS palythine-serine sulfate, MMT mycosporine-methylamine-threonine, MSE mycosporine sulfate ester; palythine-threonine. Other abbrevia-

tions as in Table 1
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marine animals such as arthropods (copepods, krill, sea

spiders, isopods, amphipods), molluscs, chordates (fish),

cnidarians (sea anemones, jelly fish, corals), protochordates

(ascdians), eubacteriobionts, poriferans (sponge), nemer-

tineans (ribbon worm), echinodermates (sea urchins, sea

stars, brittle stars, sea cucumbers, sea hares, star fish),

crinoids, platyhelminthes (planarian), annelids (polychae-

tes), bryozoans and protozoans have also been reported to

have MAAs [194] derived from their diet or from symbi-

otic partnerships [57, 140, 148, 169]. Thus, MAAs provide

protection from UV radiation not only in their producers,

but also to primary and secondary consumers. Richards

et al. [166] identified genes involved in all of the steps

of the shikimate pathway in both green and red algae

(Chlamydomonas reinhardtii and Cyanidoschyzon merolae,

respectively) as well as in the diatom Thalassiosira

pseudonana.

Mycosporine-glycine is considered as a prime MAA

synthesized in the shikimate pathway that further goes

through chemical and/or biochemical conversions to pro-

duce secondary MAAs (Fig. 4) [29, 36, 45]. Portwich and

Garcia-Pichel [160] have observed the specific incorpora-

tion of 14C-glycine and 14C-serine into the consequent side

chains of mycosporine glycine and shinorine using radio-

labelled amino acids, indicating that these free amino acids

are their direct precursors. Moreover, it has been assumed

that the high diversity of MAAs present in marine

organisms is derived from the transformation of mycosp-

orine-glycine, porphyra-334, shinorine and other MAA

bisubstituted by amino acids [35, 36, 175]. After irradiation
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biosynthetic routes of MAAs

through the shikimate pathway

and their possible

interconversion. Broken line
represents the putative

biosynthetic correlation among

3-dehydroquinate, gadusols and

MAAs. The steps of the

shikimate pathway are

represented by thick arrows, and

the number (1–7) represents the

involvement of seven enzymes

that catalyze the sequential steps

of the pathway. 1: 3-deoxy-D-

arabinoheptulosinate-7-

phosphate (DAHP) synthase;

2: dehydroquinate (DHQ)

synthase; 3: DHQ dehydratase;

4: shikimate dehydrogenase;

5: shikimate kinase; 6:

5-enolpyruvylshikimate-3-

phosphate (EPSP) synthase;

7: chorismate synthase (for

details of shikimate pathway,

see [176])
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of the toxic dinoflagellate Alexandrium tamarense at pho-

toinhibitory irradiation levels, the concentrations of paly-

thenic acid, usujirene and palythene were found to increase

with a simultaneous decrease of the porphyra-334 level

[35]. It shows that changes in the level of UVR also play an

important role in the interconversions of different MAAs

[37]. Recently, Singh et al. [185] also observed the con-

version of mycosporine-glycine into two MAAs, porphyra-

334 and shinorine, under the influence by PAR and UVR in

the cyanobacterium Anabaena doliolum (Fig. 6). Overall,

some aspects of the biosynthesis and in particular bio-

transformations of different MAAs in marine algae and

phototropic symbiotic organisms are still unsolved and

need more investigation.

Scytonemin

The photoprotective compound scytonemin is a yellow–

brown, lipid-soluble pigment deposited in the exopoly-

saccharide sheaths of some strains of cyanobacteria

inhabiting soil and rock surfaces, barks of trees and marine

intertidal mats [71, 72, 162, 170, 191]. This photoprotective

pigment was first reported in some terrestrial cyanobacteria

[145]. Recently, Richter et al. [167] extracted scytonemin

from Lyngbya sp. inhabiting rocks at the shore near Sao

Fransisco do Sul, Brasil. It is a dimeric compound com-

posed of indolic and phenolic subunits having a molecular

mass of 544 Da (Fig. 7a) and acts as a passive sunscreen in

the protection of cyanobacteria against ultraviolet radiation

in marine and freshwater environments [162]. The linkage

between the two subunits in scytonemin is an olefinic car-

bon atom that is exclusive among natural products. This

complexity of the ring structures of scytonemin generates a

specific pattern of UV absorbance [162]. Scytonemin is

mainly found in the green oxidized form; however, two

other forms of scytonemin such as the oxidized (yellow;

e.g., fuscochlorin) and the reduced (red; e.g., fuscorhodin)

have been reported to be produced depending on the redox

and acid-base conditions during the extraction process [72].
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Three new pigments, dimethoxyscytonemin, tetrame-

thoxyscytonemin and scytonin (Fig. 8), were recently iso-

lated from the organic extracts of Scytonema sp. They are

derived from the scytoneman skeleton of scytonemin. Their

structures were allocated principally on the basis of 1H and
13C NMR and MS experiments [27]. Scytonemin has an in

vivo absorption maximum at 370 nm, while purified

scytonemin has a highest absorption at 386 nm, although

it also absorbs significantly at 252, 278 and 300 nm

(Fig. 7b), and so it probably helps cyanobacteria to survive

lethal UV (UV-A and UV-B) radiation. Scytonemin is

the predominant UV-A-photoprotective pigment in the

cyanobacterial sheath that reduces the penetration of UV-A

radiation into the cell by 90% [72, 74]. It has also been

demonstrated that scytonemin alone is sufficient for sub-

stantial protection against UV-C damage [53]. It performs

its screening activity without any further metabolic

investment even after prolonged physiological inactivity;

hence, it can be a suitable candidate for use as a natural UV

screening compound for humans.

Biosynthesis of scytonemin

The biosynthesis of scytonemin probably involves trypto-

phan and tyrosine derivatives that absorb ambient UVR

[208]. The biochemical and photoprotective role of scy-

tonemin is well known, and very recently a number of

papers about the biosynthesis and molecular genetics of

this compound in cyanobacteria have been published

[8, 101, 181, 199–202]. A scytonemin-deficient Nostoc

punctiforme ATCC 29133 mutant was created using random

transposon mutagenesis [202]. The authors found the spe-

cific region in the genome of N. punctiforme ATCC 29133

and revealed a cluster of 18 genes, NpR1259–NpR1276,

associated with scytonemin biosynthesis (Fig. 9). All 18

genes are co-transcribed as a single transcriptional unit that

is upregulated by UV radiation [200]. Based on genetic,

biochemical and sequence similarity evidence, Soule et al.

[201] illustrated that six putative genes in the scytonemin

gene cluster (NpR1276 to NpR1271) with no previously

known protein functions are likely involved in the assem-

bly of scytonemin from central metabolites. The assess-

ment of these gene clusters disclosed the occurrence of

redundant copies of genes responsible for aromatic amino

acid biosynthesis. The evolutionary phylogenetic analysis

revealed that the scytonemin gene cluster is distributed

across several cyanobacterial lineages, which led to the

proposal that the distribution of this gene cluster is best

explained by assuming an ancient evolutionary origin

[199]. Balskus and Walsh [8] presented the probable bio-

synthetic route for scytonemin biosynthesis and identified

the acyloin reaction as a key step in constructing the carbon

framework of this ecologically and evolutionary important

pigment. They functionally characterized two enzymes

determined by ORFs NpR1275 and NpR1276 from the

gene cluster identified by Soule et al. [202], which are

involved in the initial step of scytonemin biosynthesis

[181] (Fig. 9). NpR1275, which resembles a leucine

dehydrogenase, was shown to catalyze the oxidative

deamination of tryptophan to form indole-3-pyruvic acid

(IPA). IPA, along with the tyrosine precursor p-hydroxy-

phenylpyruvic acid, acts as the substrate for an acyloin

reaction catalyzed by NpR1276 [a homolog to thiamine
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diphosphate (ThDP)-dependent acetolactate synthase]

(Fig. 9). The acyloin product arises from a single b-keto

acid regioisomer and exhibits a highly selective reaction by

the ThDP-dependent NpR1276 [8]. The products of

NpR1263 and NpR1269 ORFs are still to be functionally

characterized. From a comparative study of four other

cyanobacterial strains, Soule et al. [201] suggested that two

supplementary conserved clusters (NpF5232 to NpF5236)

and a putative two-component regulatory system (NpF1277

and NpF1278) are possibly involved in scytonemin bio-

synthesis and regulation, respectively, on the basis of

conservation and location.

Carotenoids

Carotenoids (yellow, orange or red substances) are

important components of the photosynthetic apparatus that

serve both light-harvesting and photoprotective functions,

either as direct quenchers of singlet oxygen and other toxic

reactive oxygen species (ROS) or playing a role in the

thermal dissipation of excess energy in the photosynthetic

apparatus [59, 66, 139, 228]. These are derived from five-

carbon isoprene units that are polymerized enzymatically

to form regular highly conjugated 40-carbon structures

with up to 15 conjugated double bonds. One or both ends of

the carbon skeleton may go through cyclization to form

ring b-ionone ring end groups, which additionally may be

substituted by oxo, hydroxy or epoxy groups at dissimilar

positions to form the different xanthophylls [197]. About

600 different carotenoids have been identified from dif-

ferent organisms such as cyanobacteria, bacteria, fungi,

phytoplankton, macroalgae, plants and animals [43, 82,

158]. Animals lack the ability to synthesize carotenoids

endogenously and thus have to take up these compounds by

means of their diet [140]. The pigment astaxanthin,

responsible for the pink/red coloration of crustaceans,

shellfish and fish such as salmon, is one of the dominant

carotenoids found in marine animals by modification of

plant carotenoids obtained in the diet.

The role of carotenoids as photoprotective compounds is

still controversial to some extent [42]; however, a signifi-

cant increase (&50%) in the outer-membrane carotenoids

echinenone and myxoxanthophyll was found in the cya-

nobacterium Nostoc commune after few hours of UV-B

irradiation [62]. The photosynthetic activity of the cyano-

bacterium Synechococcus sp. was found to be more tolerant

against UV-B radiation when having increased amounts of

endogenous carotenoids caused by genetic manipulation

[79]. A small increase in carotenoid content was found in a

Fig. 9 Proposed biosynthetic pathway for the photoprotective

compound scytonemin and associated gene (NpR1259–NpR1276)

products. Continuous arrows signify gene products that are function-

ally characterized, whereas broken arrows indicate the gene products

that are still to be functionally characterized for their involvement in

subsequent steps. Most of the ORFs in the gene cluster represented by

bold arrows from NpR1260–NpR1262, NpR1264–NpR1267 and

NpR1269 are predicted to be involved in the biosynthesis of aromatic

amino acids while the rests represent ORFs of unknown function (for

details, see [200–202])
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marine cyanobacterium, Oscillatoria sp. strain BG 091600,

after irradiation with UV-A at an irradiance of 10 W/m2

[219]. Carotenoids such as diadinoxanthin, diatoxanthin

and b-carotene were found to be induced in phytoplankton

under high PAR and UVR [196], and they may play a role

in reducing photoinhibition of photosynthesis [25].

Recently, Boulay et al. [24] reported the occurrence and

role of the orange carotenoid protein (OCP) in photopro-

tective mechanisms in various cyanobacteria. Lamare and

Hoffman [118] examined the variability in carotenoid

concentration in the gonads and eggs of four sea urchin

species (Strongylocentrotus purpuratus, S. franciscanus,

S. pallidus and S. droebachiensis) to explore the possible

role of carotenoids as photoprotective compounds and sug-

gest that carotenoids may serve as photoprotectants against

the damaging effects of UV radiation in echinoid eggs.

Photoprotection by the xanthophyll cycle is achieved as

a result of dissipation of excess excitation energy as heat

[11]. In dinoflagellates, this is mediated by the conversion

of diadinoxanthin to diatoxanthin to deactivate excited

chlorophyll [3]. Recently, Laurion and Roy [120] have

examined the photoprotective role of carotenoids in species

of dinoflagellates and diatoms with enhanced ultraviolet-B

(UV-B) radiation exposure; they concluded that the xan-

thophyll cycle is even more important than the protection

by MAAs, and the same was observed by Zudaire and Roy

[233] for the marine diatom Thalassiosira weissflogii

where photoprotective carotenoids (PPCs) dissipate excess

energy via the xanthophyll cycle as a long-term UV

acclimation response. A significant accumulation of

carotenoids was found in the subtidal alga Ptercladiella

capillacea after failure of MAA accumulation in response

to 1.5–3.0 W m-2 UV-B radiation, which shows that

carotenoids are involved in UV-B radiation defense in

P. capillacea [124]. The presence or absence of certain

carotenoids and their relative concentrations also provide

information about the possible acclimation or photopro-

tection responses of the organisms. The presence of

carotenoids implicated in the xanthophyll cycle (XC;

conversion of violaxanthin into zeaxanthin via anthera-

xanthin) indicates the possibility that the organisms might

utilize this photoprotection response [173]. In some groups

of the Chromophyta, the XC consists of the interconversion

of diadinoxanthin into diatoxanthin and thus both cycles

are involved in the thermal dissipation of excess light that

provides effective photoprotection to the photosynthetic

apparatus [121]. Dimier et al. [55] recently described the

photoprotective role of XC in marine diatoms. Regarding

the biosynthetic pathway of carotenoids in diverse organ-

isms, several studies have recently been published [30, 43,

46, 67]. Figure 10 represents the hypothesized biosynthetic

pathway of some carotenoids and showing the XC. In a

series of studies Hairston [85] concluded that carotenoids

generally function as photoprotectants in high light envi-

ronments, since carotenoids are antioxidants neutralizing

photoproduced radicals [78].

Other marine photoprotective compounds

Besides the occurrence of well-known photoprotective

compounds in the marine organisms mentioned above,

some other UVR absorbing/screening compounds have

been identified in marine organisms including 3-hydroxy-

kynurenine, sporopollenin, melanin and fluorescent

pigments. A number of reviews on photoprotective

compounds and their protective mechanisms are available

that can be referred to for further information in other

marine organisms as well as freshwater taxa [9, 42]. Some

UV-absorbing compounds such as P380 have been found in

the water column near phytoplankton blooms having broad

absorbance bands from 300 to 470 nm [128]. Melanin, a

complex polymeric structure containing aromatics and

indole derivatives, provides UV-A and UV-B screening in

humans and many vertebrates [113]. A number of bacteria

are reported to produce melanin from phenolic degradation

products, such as 3,4-dihydroxyphenylacetate, that accu-

mulate during the catabolism of tyrosine. Tyrosine degra-

dation generally requires multiple catalytic steps to convert

tyrosine to melanin precursors [16, 144]. Synthesis of

melanin has also been reported from a marine bacterium

Shewanella colwelliana [69, 70]. The facultatively anaer-

obic marine bacterium Shewanella algae produces pyo-

melanin, but the availability of such soluble compounds in

mineralized marine deposits is limited; hence, production

of melanin is an important evolutionary adaptation and

furthermore, like other organisms, S. algae produces mel-

anin also for the protection from ultraviolet irradiation

[157]. Two melanin-generating enzymes, tyrosinase and

laccase, with a wide spectrum of activity, have been

reported from another marine bacterium Marinomonas

mediterranea [131, 172]. Besides the MAAs, large quan-

tities of maristentorin (Fig. 11), a photoreceptor pigment

structurally similar to stentorin and hypericin, have

recently been reported in a marine ciliate Maristentor

dinoferus that may have a protective role against UV

irradiation; however, this conclusion needs further evi-

dence [129, 143]. It has been found that the fluorescent

pigment granules (FPGs) of corals may supplement the role

of MAAs by blocking some of the UV-A [171]. A UV-A-

absorbing pigment, biopterin glucoside (BG; a compound

chemically related to the pteridine pigments found in but-

terfly wings) (Fig. 12), with absorption maxima at 256 and

362 nm, has been purified from a marine planktonic cya-

nobacterium Oscillatoria sp. collected from the coastal

areas of Japan [134]. Also Anacystis nidulans, Anabaena
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variabilis, Nostoc muscorum and Nostoc maseaum were

found to produce pteridines in relatively large concentra-

tions. Recently, a compound thalassiolin B (Fig. 13) has

been extracted from the marine plant Thalassia testudinum

that shows superb antioxidant activity and can efficiently

repair UV-B-damaged skin upon its topical application

Fig. 10 Biosynthetic pathway

of some carotenoids. The

numbers indicate the enzymes

involved in the pathway.

Dashed arrows indicate

hypothetical conversion steps.

GGPP: geranylgeranyl

diphosphates, 1: phytoene

synthase, 2: phytoene

desaturase, 3: f-carotene

desaturase, 4: carotene

isomerase, 5: lycopene a- or

b-cyclase, 6: b/e-ring

hydroxylase, 7: b-carotene

ketolase, 8: b-carotene 303-

hydroxylase, 9: zeaxanthin

epoxidase, 10: violaxanthin

de-epoxidase, 11: violaxanthin

de-epoxidase like (based on

[31, 43])
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[165]. It has been demonstrated that some seaweed extracts

can help to protect skin from UVR [26, 68]. Overall, it

seems that our knowledge regarding the assortment and

characteristics of UV-absorbing/screening compounds is

still in its formative years and much work is still required to

elucidate the structure and function of several photopro-

tective compounds existing in nature.

Effect of environmental factors on the synthesis

of photoprotective compounds

Several environmental factors such as different wavelength

bands of UVR, desiccation, nutrients, salt concentration,

light as well as dark periods have been found to affect the

production of photoprotective compounds in various

organisms. UVR-induced synthesis of some photoprotec-

tive compounds such as MAAs has been reported from

diverse cyanobacteria, eukaryotic phytoplankton and

macroalgae. In Gyrodinium dorsum, a nontoxic dinofla-

gellate, MAA was found to increase when induced by

310 nm radiation and also by UV-A radiation [110]. Sim-

ilarly, a monochromatic action spectrum for photoinduc-

tion of the MAA shinorine was found in the red alga

Chondrus crispus under UV-A radiation [117]. Photoin-

duction of MAAs by UVR has been reported in the marine

dinoflagellate Scrippsiella sweeneyae and in diatoms [168,

210]. The photoprotective compounds (mainly MAAs and

scytonemin) in cyanobacteria are highly responsive to

UV-B radiation [190, 195].

It has been found that light is essential for MAA syn-

thesis in cyanobacteria and algae. In an experiment, the

circadian induction in MAAs (i.e., increasing during the

light period and decreasing during the dark period) was

found under alternating light (PAR or PAR ? UVR) and

dark conditions (Fig. 14) [190]. Furthermore, under natural

solar radiation, increasing concentrations of the photopro-

tective compound shinorine, a bisubstituted MAA, were

found only during the light periods, whereas more or less

constant values of shinorine concentrations were found

during and at the end of the dark period (Fig. 15) [190].

This suggests that synthesis of MAAs is an energy-

dependent process and depends on solar energy for its

maintenance in natural habitats. However, the role of PAR

and photosynthesis in MAAs production is still in dispute,

since biosynthesis of MAAs has been reported in the

absence of PAR in the cyanobacterium Chlorogloeopsis

PCC 6912 [159] as well as in nonphotosynthetic microor-

ganisms such as fungi [122] and the marine bacterium

Micrococcus sp. AK-334 [4]. Furthermore, PAR was

shown to induce the UV-absorbing compounds in a marine

macroalga Chondrus crispus [104] as well as the dinofla-

gellate Alexandrium excavatum when grown at

200 lmol photons m-2 s-1 as compared to 20 lmol pho-

tons m-2 s-1 [37]. Moreover, species of Bangia and Por-

phyra were found to accumulate UV-absorbing compounds

not only in their natural environments, but also under long-

term low-light laboratory conditions [92, 109]. The effect

of different light qualities (white, blue, green, yellow and

red light) on the accumulation of particular MAAs has also

been observed. Korbee et al. [114] reported the favorable

role of blue light in the accumulation of the MAAs por-

phyra-334, palythine and asterina-330, while shinorine was

found to accumulate under white, green, yellow and red

light in Porphyra leucosticta isolated from the intertidal

zone of Lagos, Málaga, Southern Spain.

Nutrient conditions also affect the biosynthesis of

MAAs to a great extent. A remarkable decrease in MAA

content was found in the marine dinoflagellates Akashiwo

sanguinea (syn. Gymnodinium sanguineum) and Gymno-

dinium cf. instriatum under reduced nitrogen concentration

[127]. Enriched ammonium concentrations have been

shown to raise the contents of UV-absorbing compounds in

the red macroalga Porphyra sp. [115, 155]. Recently, Singh

et al. [182] also reported the induction of MAA synthesis

by salt and ammonium in a concentration-dependent

manner without UV stress in the cyanobacterium Anabaena

variabilis PCC 7937.

Certain other factors such as osmotic stress, salt stress as

well as temperature have also been found to affect the

biosynthesis of MAAs in some cyanobacteria [159, 182,

189]. Portwich and Garcia-Pichel [159] have reported the

induction of MAA synthesis by salt stress without PAR or

UV radiation in the cyanobacterium Chlorogloeopsis sp.

PCC 6912, which can live on up to 70% sea water salinity.

Little is known concerning the effect of desiccation on the

HOCH2

HO OH

OH

O OCHCH

CH3

HO
N

N
H
N

N

NH2

O

Fig. 12 Structure of the UV-absorbing compound, biopterin gluco-

side, isolated from the marine planktonic cyanobacterium Oscillatoria
sp

-
HO

HO

CH2OH
O

SO4

OCH3

OH

HO O

OO

Fig. 13 Structure of thalassiolin B isolated from the marine plant

Thalassia testudinum

J Ind Microbiol Biotechnol (2010) 37:537–558 549

123



concentration of UV-absorbing/screening compounds of

intertidal species that are often exposed and desiccated

during low tides, though it has been investigated in other

studies carried out with bryophytes, grass and lichens [132,

150] as well as cyanobacteria [64]. However, recently,

Jiang et al. [99] reported the role of desiccation in main-

taining a high concentration of UV-absorbing compounds

in an intertidal red alga Porphyra haitanensis. The local

climatic conditions also affect the concentrations of MAAs

in a particular organism. Karsten et al. [104] demonstrated

that the concentrations of MAAs in Rhodophyceae from

polar (Spitsbergen) and cold-temperate (Helgoland, North

Sea) regions are usually only half of those in species from

warm-temperate (Spain) localities. In marine organisms

MAA levels also depend on depth, since most species of

Rhodophyceae growing in deeper waters lack these com-

pounds. In Polysiphonia arctica growing in the subtidal

zone of Spitsbergen, a strong decrease in MAA concen-

tration with increasing depth (1–7 m) has been found

[104]. Thus, it may be concluded that lower MAA contents

in species from higher latitudes or from deeper waters

correlate with lower natural solar UV irradiances in the

respective habitat.

The biosynthesis of scytonemin is strongly induced by

UV-A and PAR at high photon fluence rates [72]. The

effect of light quality has also been examined, and it has

been found that UV-A treatment is very efficient in

inducing scytonemin synthesis, whereas blue, green or red

light at the same fluence rates does not cause any signifi-

cant increase in scytonemin [72]. Dillon et al. [54] inves-

tigated the effect of other correlated stress factors including

heat, osmotic and oxidative stress on the synthesis of

scytonemin in the cyanobacterium Chroococcidiopsis sp.

and showed that both increases in temperature and oxida-

tive stress in combination with UV-A have a synergistic

effect on high production of scytonemin. Recently, Flem-

ing and Castenholz [65] have shown the effects of nitrogen

sources on scytonemin synthesis in the cyanobacterium

Nostoc punctiforme PCC 73102. Thus, scytonemin induc-

tion may be regulated as a part of a complex stress response

pathway in which multiple environmental signals affect its

synthesis.

In a study of the seasonal pigment pattern of surface

phytoplankton, Barlow et al. [14] found that under low

temperature and irradiance conditions, the photosynthetic

carotenoids were prominent; however, as temperatures and

Fig. 14 UV-B radiation-

induced circadian induction of

MAAs in cyanobacteria

showing the distinct induction

in the light phase (L) and no

induction in dark phase (D).

UV-A and PAR show only low

level MAA induction relative to

UV-B (adapted from [190])

Fig. 15 Absorption spectra of the cells showing the induction of

MAAs by UV-B (295 cut-off filter) radiation in a cyanobacterium

Nostoc commune after different durations of irradiation. Cells were

exposed under natural solar radiation, and aliquots were withdrawn at

alternating light (4, 8, 24, 32 and 56 h) and dark (48 and 72 h)

periods. The results show that MAAs were induced only during light

periods, and during dark incubation the concentration of MAAs either

remained as such or declined slightly (adapted from [190])
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irradiance increased and nutrients declined, there was a

significant increase in the proportion of photoprotective

carotenoids. High levels (&80% of total carotenoids) of

photosynthetic carotenoids (PSCs) have been reported in

high-productivity ecosystems dominated by large phyto-

plankton in contrast to low-chlorophyll surface waters with

prominent small cells, where photoprotective carotenoids

(PPCs) were dominant with [70% of the total carotenoid

pool [15, 76]. These differences might be due to physio-

logical responses to the variability in the environmental

conditions [15, 76, 217]. Overall, it seems that MAAs have

different signal transduction pathways (e.g., biochemical as

well as photosensory and genetical) for the synthesis of

MAAs; however, not much is known regarding the bio-

synthesis of MAAs, and further work is required to

establish this assumption.

Photoprotective compounds: commercial applications

UVR is one of the major exogenous harmful factors to

human health [52]. Photoprotective compounds such as

MAAs, scytonemin, carotenoids and some other substances,

identified in a wide variety of marine organisms, have anti-

inflammatory and antioxidant properties with possible

applications in the cosmetic and pharmaceutical industries

[164]. MAAs with high absorption in the UV region can

potentially be used in cosmetics and toiletries as UV pro-

tectors and activators of cell proliferation [44, 176, 214,

223]. The MAAs such as shinorine (SH), porphyra-334

(P-334) and mycosporine-glycine have potentials to protect

the fibroblast cells from UVR-induced cell death [153]. The

combined action of P-334 and shinorine, extracted from the

red alga Porphyra umbilicalis, has been reported to sup-

press UV-induced aging in human skin [48]. MAAs exhibit

a high antioxidant activity scavenging superoxide anions

and inhibiting lipid peroxidation [50, 51] resulting from

UV-induced production of ROS [152, 209]. Recently, Coba

et al. [41] also reported the antioxidant activity of P-334 and

shinorine from Porphyra and other red algae, maintaining

the antioxidant defense system of the skin as well as Hsp70

expression. The antioxidant activities of the MAAs glycine

and usujilene have been reported to inhibit lipid peroxida-

tion in aqueous extracts of marine organisms and to

scavenge 1O2 generated from certain endogenous photo-

sensitizers [147, 209]. Yoshiki et al. [227] reported a new

antioxidant compound from the MAA porphyra-334 by heat

treatment. MAAs can block the production of both 6–4

photoproduct and cyclobutane pyrimidine dimer (CPD)

formation [138]. Certain synthetic analogues of MAAs,

such as tetrahydropyridine derivatives, have been devel-

oped for commercial application as suncare products [19,

38, 56]. Moreover, a product called Helioguard� 365 that

contains mycosporine-like amino acids from the red alga

Porphyra umbilicalis has been commercialized [31].

Besides the production of sun care products, MAAs have

been commercially explored in the manufacture of several

non-biological materials such as photostabilizing additives

in plastics, paints and varnishes [12].

Scytonemin has dual kinase inhibitory activity that may

be therapeutically important in acute and possibly chronic

disorders of inflammation and proliferation. In human

T-cell leukemia Jurkat cells, scytonemin repressed cell pro-

liferation (IC50 = 7.8 lM) and induced apoptosis in 24%

of the cells (at 3 lM). Scytonemin showed a concentration-

dependent inhibition of phosphorylation of cdc25C medi-

ated by a polo-like kinase 1 (PLK1) and plays a significant

role in regulating the G2/M transition in the cell cycle

[205]. The cyclic peptide scytonemin A from Scytonema

sp. has been shown to be a calcium agonist [91]. Overall,

scytonemin has immense pharmacological potential with

antiinflammatory and antiproliferative activities [206] that

could be used to build up several novel classes of thera-

peutically valuable drugs.

Carotenoids may also directly provide photoprotection

against UVR-induced photooxidation in the skin and also

provide protection against inflammation, ulcers due to

Helicobacter pylori infection and age-related diseases

[7, 17, 31, 83, 180]. It has been shown that b-carotene can

modulate UV-A-induced gene expression in human kerati-

nocytes [221]. Carotenoids have also been assessed in

relation with their antioxidant properties [47] that can play a

key role in reducing the incidence of several UVR-mediated

diseases [6]. Several commercial values of carotenoids such

as natural food coloring agents, food additives, drugs,

enhancers of the color of egg yolks, improving the health

and fertility of cattle, and use in the cosmetic industries

have been reported [98, 203]. Arbeloa et al. [5] reported the

occurrence of natural antioxidant gadusol (3,5,6-trihy-

droxy-5-hydroxymethyl-2-methoxycyclohex-2-en-1-one)

in fish roes from the Argentine Sea and found that Brazilian

sandperch (Pinguipes brasilianus) and Argentinian sand-

perch (Pseudopercis semifasciata) are useful sources of

antioxidants for human consumption. Some carotenoids

offer provitamin A activity [135], and high consumption of

carotenoids may diminish threats of certain pathologies

[211]. Overall, it seems that these photoprotective com-

pounds may be of immense value in future biotechnological

research for the production of a number of commercial

products directly related to human health.

Conclusions

Synthesis and/or accumulation of a number of photopro-

tective compounds has been recognized from diverse
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groups of marine organisms that may counteract several

structural as well as physiological damages caused by

UVR. MAAs are the imperative and ubiquitous group of

sunscreen compounds in a large number of marine organ-

isms that can potentially reduce the detrimental effects of

UVR. Besides MAAs, scytonemin, carotenoids and several

other compounds have also been found to play a significant

role in mitigating the toxic effects of UVR in a number of

marine organisms. The concentrations of photoprotective

compounds in organisms are often positively correlated

with the exposure to UV-R and other exogenous factors.

Moreover, these photoprotective compounds have several

other potential functions with therapeutic properties that

may be exploited in a large amount of commercial appli-

cations, and further development of marine biotechnology

for human photoprotection and research must be specially

focused on the analysis, biosynthesis and mode of action of

several unknown photoprotective compounds against sev-

eral abnormalities induced by UVR.
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rine-like amino acids in the marine red alga Gracilaria cornea—

effects of UV and heat. Environ Exp Bot 43:33–43

190. Sinha RP, Klisch M, Helbling EW, Häder D-P (2001) Induction
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196. Smith RC, Prézelin BB, Baker KS, Bidigare RR, Boucher NP,

Coley T (1992) Ozone depletion: ultraviolet radiation and

phytoplankton biology in Antarctic waters. Science 255:952–

959

197. Solomons NW, Bulux J (1994) Plant sources of pro-vitamin A

and human nutriture. Nutr Rev 51:199–204

198. Sommaruga R, Whitehead K, Shick JM, Lobban CS (2006)

Mycosporine-like amino acids in the zooxanthella-ciliate sym-

biosis Maristentor dinoferus. Protist 157:185–191

199. Sorrels CM, Proteau PJ, Gerwick WH (2009) Organization,

evolution, and expression analysis of the biosynthetic gene

cluster for scytonemin, a cyanobacterial UV-absorbing pigment.

Appl Environ Microbiol 75:4861–4869

200. Soule T, Garcia-Pichel F, Stout V (2009) Gene expression pat-

terns associated with the biosynthesis of the sunscreen scy-

tonemin in Nostoc punctiforme ATCC 29133 in response to

UVA radiation. J Bacteriol 191:4639–4646

201. Soule T, Palmer K, Gao Q, Potrafka RM, Stout V, Garcia-Pichel

F (2009) A comparative genomics approach to understanding

the biosynthesis of the sunscreen scytonemin in cyanobacteria.

BMC Genomics 10:336–345

202. Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F

(2007) Molecular genetics and genomic analysis of scytonemin

biosynthesis in Nostoc punctiforme ATCC 29133. J Bacteriol

189:4465–4472

203. Stahl W, Sies H (2007) Carotenoids and flavonoids contribute to

nutritional protection against skin damage from sunlight. Mol

Biotechnol 37:26–30

204. Starcevic A, Akthar S, Dunlap WC, Shick JM, Hranueli D,

Cullum J, Long PF (2008) Enzymes of the shikimic acid path-

way encoded in the genome of a basal metazoan, Nematostella
vectensis, have microbial origins. PNAS 105:2533–2537

205. Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman C,

Jackson JR, Mattern M, Gerwick WH, Jacobs RS, Marshall LA

(2002) The identification and characterization of the marine

natural product scytonemin as a novel antiproliferative phar-

macophore. JPET 303:858–866

206. Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K,

Gerwick WG, Jacobs RS, Marshall LA (2002) Scytonemin, a

marine natural product inhibitor of kinases key in hyperprolif-

erative inflammatory diseases. Inflamm Res 51:112–114

207. Stochaj WR, Dunlap WC, Shick JM (1994) Two new UV-

absorbing mycosporine-like amino acids from the sea anemone

Anthopleura elegantissima and the effects of zooxanthellae and

spectral irradiance on chemical composition and content. Mar

Biol 118:149–156

208. Strickland EH, Horwitz J, Billups C (1970) Near-ultraviolet

absorption bands of tryptophan, studies using indole and

3-methylindole as models. Biochemistry 9:4914–4921

209. Suh H-J, Lee H-W, Jung J (2003) Mycosporine glycine protects

biological systems against photodynamic damage by quenching

singlet oxygen with a high efficiency. Photochem Photobiol

78:109–113

210. Taira H, Aoki S, Yamanoha B, Taguchi S (2004) Daily variation

in cellular content of UV-absorbing compounds mycosporine-

like amino acids in the marine dinoflagellate Scrippsiella
sweeneyae. J Photochem Photobiol B Biol 75:145–155

211. Tapiero H, Townsend DM, Tew KD (2004) The role of

carotenoids in the prevention of human pathologies. Biomed

Pharmacother 58:100–110

212. Teai T, Drollet JH, Bianchini J-P, Cambon A, Martin PMV

(1997) Widespread occurrence of mycosporine-like amino acid

compounds in scleractinians from French Polynesia. Coral Reefs

16:169–176

213. Torregiani JH, Lesser MP (2007) The effects of short-term

exposures to ultraviolet radiation in the Hawaiian Coral Mon-

tipora verrucosa. J Exp Mar Biol Ecol 340:194–203

214. Torres A, Enk CD, Hochberg M, Srebnik M (2006) Porphyra-

334, a potential natural source for UVA protective sunscreens.

Photochem Photobiol Sci 5:432–435

J Ind Microbiol Biotechnol (2010) 37:537–558 557

123



215. Tsujino I, Saito T (1961) Studies on the compounds specific for

each group of marine algae. Presence of characteristic ultravi-

olet absorbing material in Rhodophyceae. Bull Fac Fish

Hokkaido Univ 12:49–58

216. Usami Y (2009) Recent synthetic studies leading to structural

revisions of marine natural products. Mar Drugs 7:314–330

217. Veldhuis MJW, Kraay GW (2004) Phytoplankton in the sub-

tropical Atlantic Ocean: towards a better assessment of biomass

and composition. Deep Sea Res I 51:507–530

218. Vernet M, Brody EA, Holm-Hansen O, Mitchell BG (1994) The

response of antarctic phytoplankton to ultraviolet radiation:

absorption, photosynthesis, and taxonomic composition. In:

Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica:

measurements and biological effects. Antarct Res Ser, vol 62,

p 143

219. Wachi Y, Burgess JG, Iwamoto K, Yamada N, Nakamura N,

Matsunaga T (1995) Effect of ultraviolet-A (UV-A) light on

growth, photosynthetic activity and production of biopterin

glucoside by the marine UV-A resistant cyanobacterium

Oscillatoria sp. Biochimica et Biophysics Acta 1244:165–168

220. Watson AJ, Liss PS (1998) Marine biological control on climate

via the carbon and sulphur geochemical cycles. Philos Trans R

Soc Lond 353:41–51

221. Wertz K, Hunziker-Buchwald P, Seifert N, Riss G, Neeb M,

Steiner G, Goralczyk R (2005) Beta-carotene interferes with

ultraviolet light A-induced gene expression by multiple path-

ways. J Invest Dermatol 124:428–434

222. Whitehead K, Hedges JI (2002) Analysis of mycosporine-like

amino acids in plankton by liquid chromatography electrospray

ionization maas spectrometry. Mar Chem 80:27–39

223. Whitehead K, Hedges JI (2005) Photodegradation and photo-

sensitization of mycosporine-like amino acids. J Photochem

Photobiol 80:115–121

224. Wu H, Gao K, Wu H (2009) Responses of a marine red tide alga

Skeletonema costatum (Bacillariophyceae) to long-term UV

radiation exposures. J Photochem Photobiol B Biol 94:82–86

225. Wu Won JJ, Chalker BE, Rideout JA (1997) Two new UV-

absorbing compounds from Stylophora pistillata: sulfate esters

of mycosporine-like amino acids. Tetrahedron Lett 38:2525–

2526

226. Xiong F, Komenda J, Kopecky J, Nedball L (1997) Strategies of

ultraviolet-B protection in microscopic algae. Physiol Plant

100:378–388

227. Yoshiki M, Tsuge K, Tsuruta Y, Yoshimura T, Koganemaru K,

Sumi T, Matsui T, Matsumoto K (2009) Production of new

antioxidant compound from mycosporine-like amino acid, por-

phyra-334 by heat treatment. Food Chem 113:1127–1132

228. Young AJ (1991) The photoprotective role of carotenoids in

higher plants. Physiol Plantarum 83:702–708

229. Yuan YV (2008) Marine algal constituents. In: Barrow C,

Shahidi F (eds) Marine nutraceuticals and functional foods.

Taylor and Francis, Boca Raton, pp 259–296

230. Yuan YV, Westcott ND, Hu C, Kitts DD (2009) Mycosporine-

like amino acid composition of the edible red alga, Palmaria
palmata (dulse) harvested from the west and east coasts of

Grand Manan Island, New Brunswick. Food Chem 112:321–328

231. Zhang Y, Mu J, Gu X, Zhao C, Wang X, Xie Z (2009) A marine

sulfate-reducing bacterium producing multiple antibiotics: bio-

logical and chemical investigation. Mar Drugs 7:341–354

232. Zhaohui Z, Xin G, Tashiro Y, Matsukawa S, Ogawa H (2005)

The isolation of prophyra-334 from marine algae and its UV-

absorption behavior. Chin J Oceanol Limnol 23:400–405

233. Zudaire L, Roy S (2001) Photoprotection and long-term accli-

mation to UV radiation in the marine diatom Thalassiosira
weissflogii. J Photochem Photobiol B Biol 62:26–34

558 J Ind Microbiol Biotechnol (2010) 37:537–558

123


	Photoprotective compounds from marine organisms
	Abstract
	Introduction
	Marine photoprotective compounds
	Mycosporine-like amino acids
	MAAs in marine cyanobacteria
	MAAs in marine macroalgae
	MAAs in marine phytoplankton/microalgae
	MAAs in marine animals
	Biosynthesis of MAAs
	Scytonemin
	Biosynthesis of scytonemin
	Carotenoids
	Other marine photoprotective compounds
	Effect of environmental factors on the synthesis of photoprotective compounds
	Photoprotective compounds: commercial applications
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


